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We study several possible treatments of the solid-fluid boundary in lattice Boltzmann simulations of
solid-particle suspensions. QOur aim is to avoid the complications of the boundary rule pioneered by
Ladd [J. Fluid Mech. 271, 285 (1994); 271, 311 (1994)], introduced by treating the solid-fluid interactions
on the links between lattice nodes rather than on the lattice nodes themselves. We show that simply
treating the interactions in a similar manner on the lattice nodes is not a valid alternative due to the
presence of nonrelaxing fluid distributions that do not allow steady flows to be reached. After showing
the failure of the so-called “forcing method,” in which the lattice velocity distributions inside the solid
particle are forced to represent the local solid body velocity, we introduce a boundary treatment at the
lattice nodes. In combination with two further simplifications in the general algorithm, this method pro-
duces results comparable to those obtained with Ladd’s boundary rule, especially in the computations of
bulk transport coefficients of solid-particle suspensions. When used together with a fluctuating lattice
Boltzmann method, it allows for the fluctuation-dissipation theorem to be obeyed exactly at all solid-

JULY 1995

Solid-fluid boundaries in particle suspension simulations via the lattice Boltzmann method

Department of Physics and Astronomy, The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

particle volume fractions.

PACS number(s): 02.70.—c, 47.15.Pn, 82.70.Dd, 82.70.Kj

I. INTRODUCTION

Suspensions of submicrometer sized particles in a
liquid are found in industrial processes and products,
such as paints, pharmaceuticals, ceramics, and foods, and
in nature as biological fluids. There is thus considerable
interest in understanding the dynamic properties of such
suspensions. The theoretical description of these systems
at particle volume fractions ¢ exceeding the dilute limit
(say ¢ > 0.05) is considerably complicated by the presence
of indirect, or hydrodynamic, interactions between the
particles. These interactions result from the velocity
fields set up in the suspending liquid by the relative
motion of the solid particles [1]. The treatment of these
forces is complicated by the fact that they are of many-
body and long-ranged nature. Numerical simulations are
thus becoming an important method of studying the
dynamical properties of suspensions. Most simulation al-
gorithms such as Brownian dynamics [2], Stokesian dy-
namics [3], or the multipole method [4] are based on the
clear time-scale separation that exists between the dy-
namics of the fluid and the dynamics of the solid parti-
cles. This separation implies that the development of the
hydrodynamic interactions is instantaneous and that
they, therefore, depend on the positions and velocities of
all the particles. For this reason, these algorithms scale
as the square or cube of the number of particles.

Very recently however, an alternative technique for
such simulations has been proposed [5,6]. It is based
upon the combination of Newtonian dynamics of the
solid particles with a discretized Boltzmann equation (lat-
tice Boltzmann equation, LBE) for the fluid phase. The
state of the fluid is updated on a regular lattice while the
solid particles (colloidal particles) move continuously in
space and interact with the fluid at a set of special lattice
nodes. The technique takes advantage of the fact that the
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hydrodynamic interactions are time dependent and devel-
op from purely local interactions at the solid-liquid inter-
face. Thus it is not necessary to consider the global sys-
tem, but one can update one particle at a time. The
method scales linearly with the number of solid particles
and, therefore, allows far larger and more significant
simulations than those possible with conventional
methods. While the method is closely related to earlier
work done by Ladd and Frenkel using lattice gas cellular
automata [7,8], it does not suffer from the statistical fluc-
tuations present in the lattice gas method. The hydro-
dynamic interactions between solid particles are fully ac-
counted for with these lattice Boltzmann methods, both
at zero and finite Reynolds numbers [5,6]. The crucial
part of the algorithm is the mechanism of interaction be-
tween the solid particles and the fluid via the so-called
“boundary rules.” These boundary rules are implement-
ed at a set of sites on the lattice, the ‘“boundary nodes.”
The original method presented by Ladd [5,6] produces
good results for both zero and finite Reynolds number
flows. It has, however, the drawback of requiring infor-
mation from two neighboring lattice nodes by placing the
boundary nodes not on but in between lattice nodes. This
complicates the algorithm by requiring additional infor-
mation to be passed between lattice nodes.

In this paper, we will first briefly review the lattice
Boltzmann algorithm for simulating fluid flows (Sec. II).
We will then, after presenting the method proposed by
Ladd, inspect in Sec. III several other, more simple
boundary rules and evaluate their performance by apply-
ing them to simulations of particulate suspensions. We
will show that placing the boundary nodes onto the lat-
tice nodes, as was done in previous work in conjunction
with the lattice gas method [7,8], leads rather unexpect-
edly to unsteady flows in the systems we are interested in
and cannot, therefore, be used. We then present the so-
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called “forcing method” in which the fluid velocity distri-
butions inside the solid particles are forced to represent
the local solid body velocity. While this method is con-
ceptually the simplest, we will show that it cannot be
used for solid-fluid suspension simulations because the
hydrodynamic interactions between solid particles are
not correctly reproduced. Finally, we present and ana-
lyze a set of boundary rules that, while being implement-
ed on the lattice nodes, produces results as good as
Ladd’s method. We wish to emphasize that analytical
developments of the effects of boundary rules are only
possible for simple geometries (such as planar Couette
flow). For more complex boundaries, such as in particu-
late suspension, such developments are not possible and
the final judge of the quality of a boundary method is
conceptually the numerical computation of physical
quantities and the comparison of the computed values to
independent calculations.

Independent of the boundary rules used, we present
two modifications to the general algorithm of the lattice
Boltzmann and solid-particle method that considerably
simplify it. The first improvement concerns the set of
boundary nodes associated with a given solid particle. In
Ref. [6], this set of nodes is centered on the lattice node
closest to the real, continuous position of the center of
mass of the particle. This procedure ensures an equal
number of boundary nodes for each solid particle. How-
ever, when considering moving particles, the set of
boundary nodes changes abruptly when the center of
mass of the particle approaches another lattice node.
This can create temporary perturbations in the fluid flow.
We propose a method to avoid this situation, introduced
in Sec. IITA2. The second improvement concerns the
so-called “shared nodes,” boundary nodes for two neigh-
boring particles. The procedure used in Ref. [6] to treat
these shared nodes is rather complicated. We propose
here a much simplified method, introduced in Sec. III C.
We stress that these are modifications independent of the
boundary method used, even though they are illustrated
here in the context of specific methods.

II. THE LATTICE BOLTZMANN METHOD

The LBE method [9] has been used in recent years for
a wide array of fluid-flow problems. It is based upon the
discretization of space, fluid-particle velocities, and time:
space is filled with a regular lattice and the fluid-particle
velocity directions c; are defined as the links between a
given lattice node and a set of neighboring nodes. The
state of the fluid at a node r at time ¢ is characterized by
the fluid-particle distribution functions n;(r,?), where the
index i corresponds to velocity direction c;. A time step
of the LBE is completed in two distinct phases: first, the
distribution functions collide at the lattice nodes, where
the behavior is determined by the collision operator and
an equilibrium function n/9, whose form is fixed in ad-
vance. The distribution functions are then propagated
along the velocity links to the neighboring nodes, where
the process is repeated. The magnitude of the velocity
along link c; is chosen such that the distribution function
n; propagates in a single time step to the neighboring lat-
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tice node. This leads to the following kinetic equation for
the distribution functions:

ni(rte;,t+1)=n;(r,0)+ 3 w;A;[n;(r,t)—n;Ur,0)] ,
J

(1)

where A;; is a linearized collision operator [9,10]. The
sum is over the sets of velocity directions c; at node r and
w; is a weight associated with direction i.

The velocity directions c; and their respective weights
must be chosen so as to achieve isotropy of tensors of the
fourth rank formed from sums over the sets of directions
[9,11,12]. They must satisfy the following relations:

Z w; =b, 2 w;¢;, =0,

bc?
S WiCioCipg= D 8&3’ > W;CiaCipliy =0,
i i

_ bet
; wiciaciﬁci’yciﬁ_ D (D +2)

X[8,58,518ay0pst+8a58p,]1 . (2)

Greek subscripts denote spatial indices, 8,5 is the
Kronecker & function and b, D, and c? are parameters
that, while their notation derives from the lattice gas for-
malism, must be regarded as defined by the above equa-
tions and depend on the lattice on which the LBE is
based [12].

From the distribution functions n;, hydrodynamic
fields can be constructed in a similar way as they are in
kinetic theory from the one-particle velocity distribution
function [13]. The mass density p, the momentum densi-
ty j=pu, and the momentum flux or fluid stress II are

p=wpn; j=Fwngc;, D=3 wncqc,; . 3)
i i i

The equilibrium function is chosen so that after a mul-
tiscale expansion and in the low-Mach-number approxi-
mation, the incompressible Navier-Stokes equations are
obtained [9,11]. It can be expressed as a series expansion
in powers of the flow velocity u [6,9],

nfd=p( A,+ B;u-c, + C;iu:c,c; + D,u?) , @)
with
1 D D(D +2)
A;=—, B)=—", C;=""20
b ' be? ! 2bc*
p_ DD+ D | )
i 2bc* D—d |d D |’

where d is the spatial dimension, @u is the traceless part
of uu, and the double dot product is defined as
A:BzzayﬁA aﬂBﬁa‘

By choosing nf9 to linear order in the velocity field

nfi=p(A4;+B;u-c;) , (6)

the Stokes (or creeping-flow) equations are recovered [1]
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in the long-time limit, corresponding to a flow regime at
zero Reynolds number.

A simplification of the full LBE model is the lattice
BGK model (so-called in analogy with the Bhatnagar-
Gross-Krook approximation to the Boltzmann equation
[14]) [12,15,16], in which the collision operator A is
such that the distribution functions are simply relaxed at
each time step towards the local equilibrium nf? with re-
laxation time 7:

n;(r,t)—niYr,t)

ni(r+c;t+1)=n;(r,t)— - . ¥)]

The parameter 7 controls the relaxation of the viscous
stress in the fluid [12] and is linked to the kinematic
viscosity v via the relation [16]

_c2r—1)
2(D +2)

A linear stability analysis indicates that 7 must be greater
than 1, which also ensures that the kinematic viscosity is
positive.

An additional simplification is obtained when 7=1, in
which case the distributions relax immediately to their
equilibrium value and Eq. (7) becomes

(8)

ni(r+c;,t +1)=nf%r,t) . 9)

The disadvantage of the choice 7=1 is that it gives a rela-
tively high viscosity [Eq. (8)]. However, especially for
flows at zero Reynolds number (creeping-flow regime),
the viscosity is not a critical parameter and 7=1 there-
fore represents a useful simplification.

The simulations in this paper were done using a
lattice-BGK model on a 14-link lattice (model D3Q14 of
Ref. [12]), which requires somewhat less storage than the
more usual 18-link lattice [6,11]. In the 14-link lattice,
the velocity directions c; link each lattice node of a sim-
ple cubic lattice to its nearest (1 0 0) and next-next-
nearest (1 1 1) neighbors. The parameters for this model
are b =56, c>=3, and D =7 and the weights are w; =8
for the nearest and w;=1 for the next-next-nearest-
neighbor links.

In what follows, we will use ;. to indicate the time im-
mediately after the LBE collision, preceding the propaga-
tion of the distribution functions. Therefore [see Eq. (7)],

ni(r,t L )=ni(r,t)—[ni(r,t)—nfAr,t)]/7 . (10)

III. THE SOLID-FLUID BOUNDARY

The general idea of the treatment of boundaries be-
tween the solid particles (referred to also as “particles” in
the following) and the fluid is the same for all the
methods presented in this paper. A solid particle is
mapped onto the lattice and defines a set of boundary
nodes whose positions are r,. At each update of the lat-
tice, a special rule at the boundary nodes is implemented
on the distribution functions n;. This boundary rule ex-
changes momentum between the fluid and the particle
(note however that the combined momentum of the fluid
and the solid phase is conserved) and enforces a stick

boundary condition on the fluid, i.e., the fluid velocity at
the boundary nodes is matched to the local solid-body ve-
locity u,. u, is determined by the solid-particle velocity
U, its angular velocity Q, and the position of its center of
mass R,

u,=U+QX(r,—R) . (11)

The momentum density exchange causes a local force
density to be exerted on the particle at node r,, f(r,),
and the total force and torque on the particle are ob-
tained by summing f(r,) and (r, —R)X f(r, ) over all the
boundary nodes associated with the particle. These
forces and torques are used to update the position and ve-
locities of the particle according to the laws of Newtoni-
an mechanics, using a preassigned mass and moment of
inertia.

A. The generalized bounce-back rules

We consider in this section the general boundary
method developed by Ladd [6] and Ladd and Frenkel [7].
In Sec. IIIA 1, we quickly review its most recent im-
plementation, the method used in Ref. [6] with boundary
nodes placed in between lattices nodes. In Sec. III A 2,
we show that placing the boundary nodes on the lattice
nodes is not a possible alternative.

To enforce a stick boundary condition on a stationary
boundary, the so-called ‘“‘bounce-back rule” has been
used extensively in lattice gas and lattice Boltzmann
methods [17,18]. In this method, the stick condition is
enforced by reflecting, at a boundary node, the incoming
populations on link c; back into the direction c_; = —c;.
For moving boundaries, a generalization of the bounce-
back rule has been developed by Ladd and Frenkel [7,8].
The idea is to modify the incoming distributions by ex-
changing momentum between the two sides of the bound-
ary so as to change the local fluid velocity and implement
a no-slip boundary condition at the required local veloci-
ty u,; this will be illustrated in the following paragraphs.
An important feature of the generalized boundary rule is
that the added force density does not modify the local ve-
locity gradients (or shear stresses) so that the velocity
gradients at the boundary match those in the interior of
the fluid. This prevents the formation of an additional
boundary layer by the momentum density exchange [8].
The interior and exterior of the particle are treated in a
similar fashion, resulting in fluid on both sides of the
boundary nodes. It can be shown [6] that in the
creeping-flow regime, the interior fluid only contributes
an additional mass and moment of inertia to the particle.

1. Bounce back on the links (BBL)

In the most recent implementation of the generalized
bounce-back rule, the boundary nodes are placed in be-
tween lattice nodes. The solid particles are mapped onto
the lattice in the following manner. A spherical surface
of radius a (in what follows we will consider only spheri-
cal particles; however, any shape particle could be used),
is placed onto the lattice, centered at the position R of
the center of mass of the particle. It cuts a set of links c;
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and the boundary nodes are placed halfway on these
links, as illustrated in Fig. 1(a) (note that in Figs. 1-4, we
have chosen for simplicity a simple square lattice as the
underlying lattice; this is not representative of the lattice
used in the simulations). A more precise representation
of the particle surface will be obtained if a larger input
radius g (measured in terms of lattice spacings) is chosen.
We note that the solid particles do not have to be cen-
tered on a lattice node, so that R is a continuous variable.
Thus, the number of boundary nodes for a given surface
can vary from location to location. We will come back to
this point in Sec. III A 2.

A time step of the algorithm proceeds as follows: the
LBE collisions are done at all lattice nodes and the popu-
lations are propagated along their respective links. If a
link is occupied by a boundary node r,=r+1c; [Fig.
1(b)], there are two incoming populations n;(r,z, ) and
n_;,(r+c;,t.). The velocity associated with the bound-
ary node u, is defined by Eq. (11). For a stationary
boundary, u, =0, the incoming populations are reflected,

ni(r+c;,t +1)=n_;(r+c;t,),
(12)
n_ir,t+1)=n;(r,t.).

When u,70, momentum density is transferred across
the boundary surface, in the direction of movement of the
colloidal particle,

R
ni(r, t,) n_i(r+ci.ty)

(b)

FIG. 1. (a) Mapping of a circular particle onto a square lat-
tice for the BBL method. The boundary nodes are marked by
the black squares, (b) definition of nodes and distributions for
the BBL method.
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nir+c;,t+1)=n_;(r+c;,t, )+2B;pu,-c; ,
(13)
n_ir,t+1)=n;(r,t,)—2B;pu,-c; ,

where B; is the same constant as in Eq. (4).

By rearranging the populations only among opposite
pairs of velocities, the local mass density and the stress
tensor (which are both even moments of the velocities)
are not modified. The exact form and amount of momen-
tum density transferred ensures that any distribution
function with velocity u=u, is unchanged by the col-
lision rule [6]. It can also be shown that the hydro-
dynamic stick conditions apply exactly at r, [6].

As shown by Ladd [6], this method works well in simu-
lating solid-fluid suspensions both in the creeping-flow re-
gime and at higher Reynolds numbers. Transport
coefficients of particle suspensions are obtained with good
accuracy at all solid concentrations for particles with ra-
dii of the order of 4-8 lattice spacings. However, as ap-
parent from the above description of the method, its im-
plementation requires that information between two
neighboring lattice sites (the sites enclosing the boundary
node) is exchanged, therefore, complicating the simple
update of the LBE method.

2. Bounce back at the nodes (BBN)

The obvious way around the complication noted above
is to place the boundary nodes on the lattice nodes, as
done in the early simulations of Ladd and Frenkel [8].
The lattice nodes that are the closest to the shell of radius
a placed on the lattice are marked as boundary nodes.
This is illustrated in Fig. 2. An immediate drawback of
this method is that because there are less boundary nodes
for a given size particle, the resolution is reduced in this
method.

A time step of the algorithm proceeds as follows: the
LBE collisions are done at all lattice nodes except at the
boundary nodes. At the boundary nodes, for a stationary
boundary u, =0, the populations n;(r,,?) and n_;(r,,t)
are exchanged for all velocity directions. This is the
method studied by Cornubert, d’Humieres, and Lever-
more [17] and they showed that the stick boundary con-
dition then applies at halfway between the boundary node

FIG. 2. Mapping of a circular particle onto a square lattice
for the BBN method. The boundary nodes are marked by the
black squares.
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and the first fluid node. By not implementing LBE col-
lisions at the boundary nodes, the stresses on either side
of the boundary are left unchanged and thus the velocity
gradients near the boundary are continuous.

For a moving boundary, u,0, momentum density is
exchanged as for the BBL method,

ni(r,+c;,t+1)=n_,(r,,t)+2B,pu,-c; , 14)
4
n._,-(rb—ci,t+1)=ni(rb,t)—23,~pub'ci .

Again, mass and stress are not influenced by this ex-
change of momentum density. It can be shown that the
stick boundary conditions apply, as for stationary boun-
daries, at r,+1c; into the fluid. Thus, no additional
boundary layer is set up.

This method has been used and studied extensively for
stationary boundaries and some calculations on moving
boundaries have been successful in conjunction with the
lattice gas method [8]. However, we have found during
this study that this method generates unphysical behavior
when used for the simulation of particulate suspensions
or, more generally, for closely spaced boundaries of simi-
lar velocity. Indeed, we noticed that no steady fluid flows
could be reached at a high volume fraction and thus no
steady forces could be reached. We believe that this is
due to the following mechanism. At high particle con-
centrations, it is very likely that two neighboring lattice
nodes are boundary nodes for two different particles.
Taking r; and r,=r;+c; as the positions of the two
nodes and as u, and up, the local solid-body velocities at

r; and r,, respectively, we can show that the two distribu-
tion functions n_;(r;) and n,(r,) are isolated from the
rest of the fluid. Starting at time ¢ with n_;(r,,¢) and
n;(r,,t), after one time step we have

n_,-(rl,t+1)=n,.(r2,t)—ZB,~pu,,2-c,. ,

n,~(r2,t+1)=n_,-(rl,t)+2B,~pu,,1-c,- , a3
and after a further time step, supposing u, and up,
change negligibly

n_;(r,t +2)=n,~(r2,t+1)—ZB,~pu,,2-ci

=n_,~(r1,t)+ZB,»pu,,l-c,-—2B,~pub2-c,- ,
ni(rz,t+2)=n_,~(rl,t+l)+23,~publ-c,~ e
=n;(ry,1)—2B;pu, -c; +2Bpu, -c; .

Since the relative mobility of a pair of almost touching
spheres is small, U, and u,, are very similar so that

n_j(r,t+2)>~n_,(r,1t),
(17)
ni(ry,t +2)=>~n;(r,t) .

It is thus apparent that these two populations will
bounce back and forth between the two boundary nodes
without being relaxed by LBE collisions and, therefore,
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without relaxing to the general fluid motion. At high
concentrations, the number of enclosed links can be
significant and will hinder the establishment of a steady
flow in the system. We tested the hypothesis presented
here by generating configurations of colloidal particles
such that no enclosed links were present and we were
then able to reach steady flows. However, such
configurations are not thermodynamic equilibrium distri-
butions and they will, therefore, not yield correct trans-
port coefficients, even at low volume concentrations. The
calculations of hydrodynamic interactions between pairs
of spheres of Ref. [8] were possible because the spheres
were forced to have equal and opposite velocities. This
situation will usually not occur in many-particle suspen-
sions.

This result does not seem to have been appreciated so
far: the choice of the BBL method in previous work was
mainly motivated by the better resolution of the particle
surface that this method provides [6].

Note that the situation where two adjacent lattice
nodes are boundary nodes for the same solid particle can
also arise. Following the same reasoning as above, it is
clear that trapped populations can also exist in that case.
However these populations, contained within the solid
particle, will not influence the flow outside the particle
and their effect is, therefore, not felt in the same manner.

Before presenting alternative boundary methods, we
wish to address the question of the set of boundary nodes
associated with a solid particle and the definition of the
so-called hydrodynamic radius of a particle. This will
lead to the introduction of the first of the two
modifications we propose to simplify and improve the
general LBE and solid-particle algorithm. While each of
the presented boundary methods uses a different mapping
of the solid particles onto the lattice, this discussion
remains valid for all those methods.

Due to the discrete nature of the particle surface on
the lattice, it is impossible to determine an exact value for
the radius a priori. It is thus necessary to compute a hy-
drodynamic radius, obtained by fitting the computed
low-volume-fraction translational drag of a periodic array
of spheres £T=F,, /U, (where Fy, is the drag force and
Uy the volumetric flow in the unit cell) to the asymptotic
expression [19]

6my _ 1 2.827 419 , 27.4 5
§T a L L3 L6

(18)

The periodic array is obtained by applying periodic
boundary conditions to a central cell containing a single
sphere, L being the edge size of this central cell. 7 is the
viscosity of the fluid. Closely related to the computation
of the hydrodynamic radius is the definition of the actual
set of boundary nodes that represent each solid particle.
Whereas in Ref. [6] each particle has an identical set of
boundary nodes (determined by mapping onto the lattice
the sphere of radius a centered on the lattice node closest
to the actual position R of the particle), here we prefer to
determine the boundary nodes by using the sphere of ra-
dius a centered on the actual position R. This has the
clear advantage that the set of boundary nodes moves



52 SOLID-FLUID BOUNDARIES IN PARTICLE SUSPENSION . . .

s

LT

FIG. 3. Two different mappings for two particles of the same
input radius for the BBN method. The white square ((J) marks
a shared node between the two particles.

more continuously with the position R of the particle and
it thus avoids large perturbations of the fluid flow as the
set of boundary nodes is changed. However, the set of
boundary nodes will vary from particle to particle and
with time as the particle positions change. This is illus-
trated in Fig. 3 with the BBN mapping. The set of
boundary nodes determines the interactions of the parti-
cle with the surrounding fluid and thus influences the hy-
drodynamic radius. We solve this problem by determin-
ing an average hydrodynamic radius ay from a random
sample of particle locations (typically of the order of 100)
and averaging the corresponding hydrodynamic radii.
The statistical errors in the average radius are then of the
order of 1 part in 1000.

B. Forcing method (FM)

We investigate in this section a method proposed by
Chen et al. [20] that differs considerably from the gen-
eralized bounce-back scheme but that is perhaps intui-
tively more attractive.

In the FM, the particle is mapped onto the lattice in a
very simple way: all the lattice nodes within the shell of
radius @ are “boundary nodes” (Fig. 4). This appellation

FIG. 4. Mapping of a circular particle onto a square lattice
for the FM method. The boundary nodes are marked by the
black squares.
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is not quite correct here since nodes in the interior of the
particle are not on its boundary, but we will continue to
use this term to denote those lattice nodes where a special
‘“boundary rule” is implemented. The boundary rule at
the boundary nodes takes effect at the same time as the
LBE collision at the fluid nodes: instead of updating the
distribution functions according to Eq. (7), they are
forced to the equilibrium distribution corresponding to a
local velocity u,(r,) [Eq. (11)]

n;(ry,+c;,t +1)=p(r,,t)[ A;+B;c; u,(r,,t)] (19)

for a creeping-flow simulation. The fluid distributions in-
side the particle are thus forced to represent the solid-
body motion, u(r,)=u,(r,).

It is clear from the above description that the stresses
are not conserved by the boundary rule; they are forced
to their equilibrium value. Thus, a boundary layer is
created in which the velocity gradients inside the fluid
match their equilibrium value at the particle boundary.
It can be shown [21] that for planar Couette flow, the
stick boundary condition holds at r, +xqc; into the fluid,
where x,=1—17 and 7 is the relaxation parameter of the
viscous stresses [Eq. (7)]. Thus, when 7=1, and the
stresses are immediately relaxed to their equilibrium
value in the fluid, no boundary layer is present. This
analysis is valid for simple shear flow in two dimension
but for more complicated boundaries in three dimensions,
as present in colloidal suspensions, no such analytical
treatment is possible. Therefore, to judge the value of
this boundary method, we compare computations of
different transport coefficients using the LBE method
coupled with these boundary rules to independent numer-
ical calculations [4].

We have computed the following quantities for suspen-
sions of 16 spheres: the permeability of a fixed
configuration (K), the short-time collective mobility (u),
and the short-time self-diffusion (D). The permeability
relates the volume-averaged velocity of the fluid through
a configuration of spheres to the applied pressure gra-
dient. The collective mobility describes the motion of the
configuration of spheres under the influence of an exteri-
or force and is, therefore, related to the sedimentation ve-
locity of the configuration. The self-diffusion describes
the motion of a single sphere within the configuration un-
der the influence of an external force. It should be noted
that we are considering instantaneous equilibrium parti-
cle configurations and thus measurements on a time scale
sufficiently short that the particles do not move over dis-
tances comparable to their radius. The diffusion
coefficient measured 1is, therefore, the short-time
diffusion. These simulations are based on dissipative
methods and the exact methodology is described in detail
in Ref. [6] and will not be further discussed here.

The results we report here were obtained with 7=1.
They are averaged over 96 equilibrium distributions of
spheres, generated with a standard hard-sphere Monte
Carlo program, and are shown in Fig. 5 for a number of
different sized spheres (the radii ay being expressed in
terms of lattice units) to illustrate the convergence of the
method with the radius of the particles.
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FIG. 5. Transport coefficients for 16 spheres as a function of
volume fraction obtained with the FM boundary method. The
solid curves are independent numerical calculations [4] and can
be considered exact. The radii are in terms of lattice spacings.
K, /K is the normalized inverse permeability, u /u, the normal-
ized collective mobility and D, /D, the normalized short-time
self-diffusion. The statistical errors are smaller than the plot-
ting symbols.

The results for the inverse permeability K ~! are nor-
malized by its low density limit K ;! =2¢/a 2, where ¢ is
the solid-particle volume fraction. They compare rather
well with the independent computations, except at high
volume fraction, where very large particles would be
necessary for accurate results. The collective mobility u,
normalized by the isolated-sphere result uo=(6mnay )"},
is obtained quite accurately with relatively small spheres.
However, the FM method clearly fails in the computa-
tion of the short-time self-diffusion D; (normalized
here by the isolated-sphere result D, =kpTpu,, where kg
is the Boltzmann constant and 7 the temperature).
Throughout the concentration range, results are too large
and the results do not seem to improve by increasing the
particle size. We were able to obtain better results by
lowering the kinematic viscosity v of the fluid [see Egs.
(7) and (8)]. However, it was impossible to get consistent-
ly good results over the whole range of volume fraction:
the viscosity can be tuned so as to produce an acceptable
result at a given volume fraction, but this same viscosity
would then produce poor results at other volume frac-
tions. Moreover, by lowering the viscosity, the transient
hydrodynamic time 75 =a% /v is increased and thus the
length of the simulation increases proportional to v~ .
The self-diffusion coefficient D; depends strongly on the
hydrodynamic interactions between particles [22] and
especially on the lubrication forces when the particles are
near contact. Computations of two-body hydrodynamic
forces with the FM method have shown that these forces
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are not obtained correctly at particle separations of about
1-2 lattice spacings—our calculations show that the
forces are underestimated by 20—25 % for the particle ra-
dii used in the computations presented here. This might
be the reason for not obtaining the correct self-diffusion
over the whole range of volume fractions and the permea-
bility at high volume fraction. It is, however, not entirely
clear yet why the FM method fails to reproduce the two-
body hydrodynamic interactions. A possible cure to this
problem might be to include the lubrication forces explic-
itly in the simulation, as is done for simulations using
Stokesian dynamics [3]. However, since our results are
equally poor throughout the particle concentration range,
it is not quite sure if this modification would improve the
results significantly.

C. Relaxed bounce back at the nodes (RBBN) »

We present in this section a boundary method that,
while treating the fluid-solid interactions on the lattice
nodes, produces good results in the calculation of trans-
port coefficients. To our knowledge, it has not been ap-
plied before, but is similar to a method proposed by
Ziegler [18] for stationary plane walls. We will also
present the second proposed improvement to the general
LBE and solid-particle algorithm concerning the shared
boundary nodes.

The motivation for the RBBN method is to improve
the results of the BBN method by avoiding the problem
of the “trapped” distributions. The main observation is
that for the BBL method, even though two adjacent
boundary nodes might be boundary nodes for different
particles, leading to distributions trapped between two
boundary nodes, these populations are relaxed at each
time step by the LBE collisions. The method presented
here is a combination of the BBL and BBN methods.
The boundary nodes are located at the lattice nodes, but
the LBE collisions are done at every lattice node, includ-
ing the boundary nodes. Using the same definition of
boundary nodes as for the BBN method (Fig. 2), the up-
date at the boundary nodes is now

n;(ry+c;,t +1)=n_;(r,,t, )+2B;pu,-c; 20)

n_;r,—c;,t+1)=n;(r,,t, )—2B;pu,-c; .
It can readily be seen that even though the exchange of
momentum density itself leaves the local stresses un-
changed, the incoming information about the velocity
gradients contained in n;(r,¢) is modified by the LBE col-
lisions leading to n;(r,z, ). The velocity gradients at the
boundary will, therefore, not match the velocity gradients
in the interior of the fluid. As will be seen in what fol-
lows, this leads to the creation of a thin boundary layer
and somewhat modified fluid velocity distributions inside
the wall.

As an idealized model of what is happening at the
boundary of a solid particle, we study a plane boundary
wall moving at velocity uge, between a uniform flow
(representing the flow inside the particle) and a simple
shear flow (representing the flow outside). We assume
that the flows are time independent and invariant under
translation in the y and z directions and work with a
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two-dimensional projection into the xy plane of the 14-
link model [12], as presented in Fig. 6. We recall that the
parameters for this model are b =56, D =7, and ¢?*=
and the weights are w; =8 for the (1 0) directions and
w; =1 for the (1 1) directions. Working at a low Rey-
nolds number, we use the linear approximation to the
equilibrium distribution function [Eq. (6)]. The problem
is to find the distribution functions that are stationary un-
der the boundary rules at the wall (x =0) and that
represent a uniform flow for x <0 and a shear flow with
uniform velocity gradient ¥ for x >0. (A similar problem
has been solved for the BBL method in Ref. [6].) We will
show in the following development that an exact linear
shear flow with velocity gradient y is generated in the ex-
terior fluid and that the interior fluid moves at uniform
velocity uq—y /12. A boundary layer of width  is set
up.

The velocity distribution for the uniform flow for x <0
is the equilibrium distribution,

no(x)=2, ny(x)=1, n_,;(x)=1,

ny(x)=1+7%u,, n_,(x)=1—1u,, (21)
ny(x)=2(1+7u,), n_3(x)=2(1—1u,),
na(x)=2(1—2u,), n_,(x)=2(1+71u,).

Here u,e, is the flow velocity and the mass density has
been set equal to p=b =756 for convenience. The distri-
butions of the (1 1) directions (i ==3,%t4) have been
multiplied by two to account for the number of projec-
tions from the three-dimensional lattice giving the same
velocity direction in two dimensions [for example, (1 1 1)
and (1 1 T ) both project onto (1 1)]. Another feature of
this two-dimensional projection is the appearance of a
rest particle (i =0) which results from the projections of
the (0 0 1) and (0 O 1) links; it’s distribution function is
thus also multiplied by two. These distributions are the
equilibrium distributions and are unchanged by the LBE
collisions [Eq. (7)]. As they are x independent, they are
not modified by the propagation step. Thus, for x <1,
these distributions are stationary.

The expected distribution in the shear flow with uni-
form velocity gradient for x >0 is the equilibrium distri-
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FIG. 6. Two-dimensional projection of the 14-link model and
geometry of the problem considered. The open squares are the
fluid nodes, the filled squares the boundary nodes of the wall.
The weights of the velocity directions are w; =8 for directions
i==1,%2 and the rest particle i =0, and w; =1 for the diagonal
directions i = 13,14,

bution with u=[u,+y(x —x,)]e, plus the nonequilibri-
um distribution [6,11]

nf=—1Irc;, c; . (22)
x 'y

The offset x allows for the inclusion of a boundary layer.
Thus, for x >0,

no(x)=2, ny(x)=1, n_;(x)=1,
ny(x)=1+2{uy+v(x —x0)],
n_y(x)=1—2[ug+v(x —x0)],

(23)
ny(0)=2{1+3ug+y(x—xo)1—%rr},
n_3(x)=2{1—Huo+y(x—x0)1—377v} .
my(x)=2{1—Huo+7(x —x0)1+ 177} ,
n_g(x)=2{1+{ug+v(x—x0)1+37v} .

The post-collision distributions are calculated from Egs.
(3), (6), and (7) and propagated to the neighboring nodes.
For x > 1, the new distributions, noted n;(x) are then,

ny(x)=2, ni(x)=1, n_;(x)=1,
ny(x)=1+2{ug+v(x —x)1,
n’_,(x)=1—uy+y(x—x4)],
ny(0=2{1+1[ug+y(x —1—xo)]=2r—1)y} , (24)
n_3(x)=2{1—Hup+y(x +1—x4) ] —Hr— 1)y},
ny(x)=2{1—Huy+yx —1—x0) ]+ 37—y},
n'_4(x)=2{1+Huo+v(x +1—x0) 1+ Hr—1)y},

which are identical to the initial distribution [Eq. (23)].
Thus, these distributions are stationary.

At the boundary node (x =0), the incoming popula-
tions are

ny(0)=2, n,;(0)=1, n_;(0)=1,

n(0)=1+7u,, n_,(0)=1—1u,,
n3(0)=2(1+1u,), (25)
n_3(0)=2[1—T(ug—yxe)—377],
ny(0)=2(1—1u,),
n_4(0)=2[1+uy—yxo)+3ry].

Using Eq. (3) and setting u, =u,—¥x,, a choice that will
be justified a posteriori, one obtains

pu(0,6)=[56(uy—yx,)+Zy7le (26)

)
Applying Egs. (6), (7), and (20) with u, =u4e, and noting
by ¢, the time immediately after the LBE collisions
and the momentum density exchange, we obtain the fol-
lowing distributions at the boundary:
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no(0,t 4 4 )=2, n(0,z,,)=1, n_(0,t,)=1,
n, (0,4 )=1+ug—yxe)+Iy(+—2x,),
n_5(0,t4 4 )=1—Hug—yxe)+Iy(i—2x,),
n3(0,¢4 . )=2{1+ 2 ug+y(1—x¢)]1— 177}
+22y(L—2x,) 27
n_3(0,t4 4 )=2[1—J(ug—rxo)1+23y(5—2x¢) ,
na(0,t 4 )=2{1—2{uy+y(1—x0)]+ Iy}
+22p(1—2x,),
n_g(0,t4 ¢ )=2[1+T(uy—vxo)]+23y($—2x) .

Propagating these distributions to the neighboring nodes,
comparison with expressions (21) and (23) leads to the
conclusion that the proposed distributions are stationary
under the boundary rule if the width of the boundary lay-
er is xo=4. This result justifies the choice of
u,=uy—Yyxy,. We note that the width of the boundary
layer is viscosity independent. By applying Eq. (3) to the
above distributions, we obtain

pw(0,2,  )=[56(ug—yxo)—Byr+Zyle, . (28)
The average velocity at the boundary node u,,, is

1 pu(0,2)+pu(0,¢, )
P 2

U,y = =uge, (29)
(p=56, xo=1) and thus equal to the imposed node ve-
locity u,, as expected.

The force onto the wall resulting from the boundary
rule is computed as

foan=—[pu(0,z ) —pu(0,z,)] ; (30)

pu being a LBE collision invariant, we can substitute
pu(0,¢ ) with pu(0,¢) and, using Egs. (26) and (28), ob-
tain (p=756)

foan=[32(27—1)yle,=nve, , (31)

where 7=pv is the viscosity of the fluid and the last iden-
tity derives from Eq. (8).

We have thus shown that by imposing a boundary ve-
locity u at the wall, a linear shear flow with velocity gra-
dient y is generated in the exterior field and the interior
fluid (in the case of a solid particle simulation) moves at
uniform velocity u,—¥y/12. A viscosity-independent
boundary layer of width ; is set up. These results have
been verified by numerical simulations of planar Couette
flow [21]. The force per unit area onto the boundary is
computed exactly for the linear shear flow considered
here. It may be surprising that the uniform flow inside
the particle does not have the expected velocity u, of the
wall. However, the exact velocity distribution inside the
particle is not physically relevant for the present simula-
tions, whereas the exact computation of the forces on the
particles is the essence of the procedure.

The analytical results presented here show the applica-
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bility of the method to a simple flow configuration. In or-
der to test the method for particulate suspensions, we
perform several numerical tests and compare our results
to independent calculations [4].

The general methodology for these tests is discussed in
detail in Ref. [6]. Before, however, presenting the results
of these numerical simulations, we discuss the improve-
ment we propose to the treatment of the so-called
“shared boundary nodes.” These nodes are boundary
nodes shared between two adjacent particles, as illustrat-
ed in Fig. 3. The procedure for updating the distribution
functions at the shared nodes described in Ref. [6] is to
implement the usual momentum density exchange, using
the average of the two local particle velocities as the
boundary node velocity [Eq. (11)],

ub=%[U1+le(rb—R1)+U2+Q2X(Ib—'R2)] . (32)

The resulting force is then divided equally between the
two particles. As shown in Ref. [6], in the absence of
shear stress inside the particles this procedure leads to
zero force on the particles and has thus the same effect as
allowing the distribution functions to pass freely from
one particle to the other and not implementing the
boundary rule at the shared nodes. A similar result is
easily obtained for the present RBBN method. At steady
state and in the absence of shear stress inside the parti-
cles, the local fluid velocity at the shared node is equal to
the average of the local flow velocities inside the two par-
ticles and thus equal to u, as constructed in Eq. (32).
The force on the particles will, therefore, be zero. To
simplify the procedure at the shared nodes, we thus sug-
gest treating all shared boundary nodes as simple fluid
nodes. As will be seen in the following, this simplification
has proven successful.

The first test is the computation of the translational
and rotational friction coefficients of a simple cubic lat-
tice of spheres, obtained by imposing periodic boundary
conditions on the unit cell containing a single sphere. As
for the FM, the hydrodynamic radius of the particle is
obtained from the translational drag at low volume frac-
tion. The hydrodynamic radii are again averaged for
about 100 different positions of the center of mass of the
particle within the lattice to take into account the various
possible configurations of boundary nodes, as discussed
previously. The results are presented in Fig. 7, compared
to independent numerical results that can be considered
exact [4]. The agreement for the translational friction
can be seen to be good over the whole range of volume
fractions, even for very small particles with a radius of
the order of three lattice spacings. The results for the ro-
tational friction are clearly not as good at a high volume
fraction, especially when compared with the results ob-
tained by the BBL method in Ref. [6]. Large particles
are needed to approach the expected result. The reason
for this lies in the location of the boundary nodes. Gen-
erally, the resolution of the particles on the lattice is
better with the BBL method than with the RBBN
method; the discrete nature of the lattice is more marked-
ly felt for the rotational friction because the surfaces of
neighboring spheres (of the central sphere and its period-
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FIG. 7. Normalized translational (£7) and rotational (£%)
friction coefficients for periodic arrays of spheres as a function
of volume fraction. The coefficients have been normalized by
the isolated-sphere result. The solid curves are results from in-
dependent numerical calculations [4]. The statistical errors are
smaller than the plotting symbols.

ic images) are in relative motion and thus the exact shape
of the surfaces is of importance. It was also seen in the
above analysis of the boundary rule that the stick bound-
ary condition does not exactly apply at the boundary
node. The force densities f(r,) resulting from the
momentum density exchange at the boundary are physi-
cally not applied at r, but at the outer edge of the bound-
ary layer r, +xgc;. This has no influence on the total
force applied onto the particle and the translational fric-
tion is thus obtained correctly. However, the total
torque, obtained by summing (r, —R)Xf(r,) over the
boundary nodes, will not reflect the true torque onto the
particle. Again, this effect is diminished for large parti-
cles. However, as will be seen in what follows, this has
no measurable consequences on the results obtained for
the bulk transport properties of suspensions.

A more important test of the simulation method is the
computation of the hydrodynamic forces between solid
particles. We will consider here pairs of spheres in rela-
tive motion to each other. The lubrication forces, when
the particles are close to contact, diverge as s ~ ' along the
line of centers and as Ins ~! perpendicular to the line of
centers, where s =(R |, —2a)/a is the relative spacing be-
tween two particles of radius a and R, the center-center
distance. The two particles move with velocities u and
—u, respectively, either along their line of centers or per-
pendicular to it. Our results, presented in Fig. 8, are
again averaged over particle positions (and thus sets of
boundary nodes) and are compared to independent calcu-
lations of the hydrodynamic forces—including the lubri-
cation forces—for an identical geometry [6]. The results
obtained for the forces along the line of centers are in ex-
cellent agreement with those independent calculations.
Even for interparticle separations of less than one lattice
spacing, our results agree remarkably well with lubrica-
tion theory. This is a clear improvement over the results
obtained in Ref. [6], where the required divergence of the
lubrication forces was not reproduced for particle separa-
tions of less than one lattice spacing. However, it is not
entirely clear if this improvement is due to the choice of
boundary rules or to the treatment of the shared nodes,
which will clearly be present at such small interparticle
distances. The results for the transverse force are poorer,
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FIG. 8. Hydrodynamic interactions between pairs of spheres.
The parallel (£!) and perpendicular (£*) friction coefficients are
plotted as function of the particle-particle distance
s=R,,/ayg—2, where R, is the center to center distance and
ay the hydrodynamic radius. The solid lines are independent
numerical solutions [4]. The statistical errors are smaller than
the plotting symbols.

the reason for this being similar to the reasons affecting
the rotational friction, mainly the rather poor resolution
of the particles on the lattice obtained with the RBBN
method. This has a bigger influence on surfaces that
move parallel to each other than on surfaces moving to-
wards each other.

As for the FM, we have computed three transport
coefficients via dissipative methods: the inverse permea-
bility of a fixed configuration (K ~*), the short-time col-
lective mobility (u), and the short-time self-diffusion
(D). The normalized results are presented in Fig. 9. It
is apparent that all three transport coefficients are ob-
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FIG. 9. Transport coefficients for 16 spheres as a function of
volume fraction obtained with the RBBN method. Legend as in
Fig. 5. The rotational self-diffusion DX has been normalized by
the isolated-sphere result DX. The open symbols for the nor-
malized rotational diffusion are the results from Ref. [23].
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tained with very good accuracy over the whole concen-
tration range and for particle radii not exceeding five lat-
tice spacings. Thus, the limitations of the RBBN method
noted above for the rotational drag and, to a lesser ex-
tent, for the two-body hydrodynamic interactions perpen-
dicular to the line of centers do not seem to have any
influence on the results of our computations of these
transport coefficients. As a final test to see if the failure
to correctly reproduce the rotational friction might have
an influence on transport coefficients related to rotational
movement, we have computed the short-time rotational
diffusion coefficient for an equilibrium configuration of
spheres. This was done by imposing an angular velocity
Q, on one particle in the configuration and measuring its
steady-state torque T;. The rotational mobility uy is

Br="7" (33)

and the rotational self-diffusion is obtained from
DR=kyTug, where ky is the Boltzmann constant and T
the temperature. We compare our results in Fig. 9 to
those of Phillips, Brady, and Bossis [23], obtained via a
Stokesian dynamics method that explicitly includes lubri-
cation forces. The data is normalized by the isolated-
sphere result DX =kpT(87na3)~!. As shown in Ref.
[23], finite-size effects are negligible for this calculation
and we compare our data for 16 spheres to their data for
27 spheres. To match the results of Ref. [23], quite large
spheres are needed with our method. This was expected
in view of our results for the rotational friction; however,
the deviations from the results of Ref. [23] for a sphere
with a radius of the order of 4.5 lattice spacings are never
more than 10% and it appears that the difficulties en-
countered with rotational motion are less severe in ran-
dom dispersions than in periodic lattice arrangements of
spheres.

While the above results for the self-diffusion and the
collective mobility have been obtained via a dissipative
method, it is also possible to simulate “thermal” fluctua-
tions in the fluid by adding random components to the
fluid stress tensor [5,6]. The kinetic equation (1) is then
modified to
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nirtc;,t +1)=n;(r,t)+ 3 w;A;[n;(r,t)
J

—nj4r,t)]+n/(r,t),
(34)

where n/(r,t) is chosen such that only its contribution to
the fluid stress is nonzero,

n/(1,8)=C;045C;0,Cip - (35)

0 ,p are the random stress fluctuations and are sampled
from a Gaussian distribution whose variance fixes the
temperature. C; is a constant defined in Eq. (5). It is thus
possible to simulate Brownian motion with the fluctuat-
ing lattice Boltzmann method and calculate the transport
coefficients via Green-Kubo-type relations. If the
fluctuation-dissipation theorem is obeyed, the results ob-
tained via the fluctuating and the dissipative methods
should agree with each other. The results presented in
Ref. [6] suggest that fluctuation dissipation is not exactly
obeyed at high solid concentrations with the BBL
method —possibly due to the treatment of the shared
nodes. We have done similar calculations with the
RBBN method and the simplified treatment of the shared
nodes described above. The short-time collective mobili-
ty (u) and the short-time self-diffusion (D, ) are obtained
from integrals over the velocity correlation functions of
the particles [6]. In Table I, we compare the results for
those two transport coefficients from the dissipative and
the fluctuating method. As can be seen, fluctuation dissi-
pation is obeyed at all volume fractions for particles with
radii superior to about 3.5 lattice spacings and at low
volume fraction for particles with radii as small as 2.5 lat-
tice spacings. This is a clear improvement over the re-
sults reported in Ref. [6].

IV. CONCLUSIONS

We have studied different methods of treating the
solid-liquid boundary in a lattice Boltzmann fluid in or-
der to simulate solid-particle suspensions. It was seen
that the generalized bounce-back rule as devised by Ladd
[6] and Ladd and Frenkel [7,8] is only applicable when
the boundary nodes are placed on the lattice links and

TABLE I. Comparison of results for the normalized short-time self-diffusion D, /D, and the normal-
ized collective mobility p/pu, for 16 spheres between the dissipative and fluctuating methods. The radii
are in lattice units and ¢ is the particle volume fraction.

D, /D, 1/
Radius ¢ Dissipative Fluctuating Dissipative Fluctuating
2.93 0.086 0.601+0.005 0.594+0.009 0.451+0.005 0.45010.025
0.211 0.400+0.005 0.404+0.009 0.210+0.003 0.235+0.035
0.412 0.201+0.003 0.176+0.004 0.073+0.001 0.07210.005
3.97 0.394 0.206+0.003 0.201+£0.005 0.072+0.001 0.072+0.006
0.453 0.159+0.003 0.153+0.006 0.051+0.001 0.050+0.001
4.47 0.383 0.203+0.003 0.20240.005 0.075+0.001 0.074+0.001
0.492 0.126+0.002 0.120+0.008 0.038+0.001 0.036+0.003
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not on the lattice nodes. However, placing the boundary
on the links [6] complicates the algorithm by requiring
additional information to be passed in between lattice
nodes. We have shown that the intuitively simple FM, in
which the fluid distribution functions inside the solid par-
ticle are forced to their equilibrium value representing
the local solid-body velocity, does not reproduce correct-
ly the hydrodynamic forces between solid particles. We
have then introduced a new boundary rule, the “relaxed
bounce-back rule.” This boundary method combines the
generalized bounce-back rule at the lattice nodes with
LBE collisions at all lattice nodes. The solid-fluid in-
teractions are thus treated simply on the lattice nodes.
Through numerical computation of friction coefficients,
hydrodynamic forces and several transport coefficients of
particle suspensions, it was shown that this new method
constitutes a valid and worthwhile alternative to the
bounce-back rule with boundary nodes on the links as
pioneered by Ladd [6]. While the method proposed by
Ladd is particularly successful in reproducing the rota-
tional behavior of solid particles, the method proposed
here, as well as being easier to implement, seems to per-
form better for translational motion. In addition, we
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have introduced a simplified treatment of the so-called
“shared nodes” and a new definition of the set of bound-
ary nodes associated with a given particle. Both changes
simplify considerably the general LBE—solid-particle al-
gorithm. When using a fluctuating LBE for the simula-
tion of Brownian motion [5,6], those changes, together
with our new boundary rule, allow for fluctuation dissipa-
tion to be obeyed exactly through the whole range of
solid-particle volume fractions.
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